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Abstract:-  Klein Gordon equation has been solved numerically by using fully implicit finite difference 

method (FIFDM) and exponential finite difference method (ExpFDM) and we found that both methods can 

solve this kind of problems, example showed that fully implicit method  is more a accurate than exponential 

finite difference method. 
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I. INTRODUCTION 
 Partial differential equations arise frequently in the formulation of fundamental laws of nature and in 

the mathematical analysis of a wide variety of problems in applied mathematics, mathematical physics, and 
engineering science. This subject plays a fundamental role in modern mathematical sciences, especially in 

physics, geometry, and analysis. Many problems of physical concern are described by partial differential 

equations with appropriate initial and/or boundary conditions [1]. The search for a new mathematical algorithm 

to discover the exact solutions or approximate solutions of nonlinear partial differential equations (PDEs) is an 

important and essential task in nonlinear science. One of the traditional techniques to find an approximate 

solution for the given problem is the finite difference method. The short history of the finite difference method 

starts with the 1930s. Even though some ideas may be traced back further, we begin the fundamental theoretical 

paper by Courant, Friedrichs and  Lewy (1928) on the solutions of the problems of mathematical physics by 

finite differences. (Thomee 1999).[2] 

 

II. INDENTATIONS AND EQUATIONS 
II.1 Mathematical Model  

The Klein-Gordon equation, 

                                                               (1)  

 was named  after  the physicists Oskar Klein and Walter Gordon, who in 1926 proposed that it 
describes relativistic electrons. Some other authors make the similar claims in the same year. The equation was 

first considered as a quantum wave equation by Schrödinger in his search for an equation describing de Broglie 

waves. The equation is found in his notebooks from late 1925, before he made the discovery of the equation that 

now bears his name. He rejected it because he couldn’t make it fit data (the equation doesn’t take in account the 

spin of the electron), the way he found his equation was by making simplifications in the Klein Gordon 

equation. In 1927, soon after the Schrödinger equation was introduced, Vladimir Fock wrote an article about its 

generalization for the case of magnetic fields, where forces were dependent on velocity, and independently 

derived this equation. Both Klein and Fock used Kaluza and Klein's method. [3]  

Fiore et al. (2005) gave arguments for the existence of exact travelling wave solutions of a perturbed sine 

Gordon equation on the real line or on the circle and classified them [4]. 

      When then equation (1) is called –nonlinear klein Gordon equation  (  equation)[5] 

                                                                  (2) 

or  [11]  

                                                                    (3) 

With initial and boundary conditions [12] 

 and     ,   ,    

 
Equation (3) arises in quantum field theory with m denoting mass and ε is coupling constant [6,7]. The  

equation has become an important subject because of its numerous applications in condensed matter physics. It 
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describes, for example, structural phase transitions in ferroelectric and ferromagnetic materials, topological 

excitations in quasi one dimensional system like biological macromolecules and hydrogen chains, or polymers, 

etc. Its simplest localized solutions  so-called ”kinks” which are related to the motion of the aforementioned 

topological excitations, e.g., domain walls in second order phase transitions, or polymerization mismatches. A 

more realistic modeling of physical situation in condensed matter physics often requires the inclusion of 

perturbations of different types like thermal noise and time or spatial dependent potential fluctuations [ 8 ]. 

The equation was first proposed by Aubry  , Krumhansl and Schrieffer in 1975 and 1976, to describe 

displacive and order-disorder transitions in solids, mainly magnetic compounds [9 ]. Manna and Merle (1997) 

used multiple- sale perturbation theory. They showed that a nonlinear (quadratic) Klein – Gordon type equation 

substitutes in a short- wave analysis the ubiquitous Korteweg-de Vries equation of  long-wave approach. 

Dmitriev et. al. (2006) discussed some discrete  equations free of the peierls-Nabarro barrier and identified 

for them the full space of available static solutions, including those derived recently in physics but not limited to 

them [1].  

 

 

II.2 Derivative of Fully Implicit Method for  Equation  

   In this method, we evaluate the unknown function  at  from the known function  at , as shown 

in figure (1):  
 

 
 

Let the coordinate  of the grid points be  Where p, q are integers. Denote the values of u at 

these mesh points by  

 
 

         (4) 

Similarly  

               (5) 

Then, for derivation fully implicit method, we substitute (4) and (5) at (j+1), as follows: 
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            (6) 

Recall that Taylor’s formula of order two is: 

                (7) 

Now, substitute (1) in (7), yields 

        (8) 

Now, we use (8) to find the second row: 

 

        (9) 

 

II.3 Derivative of Exponential Method for  Equation  

 The exponential finite-difference method was originally developed by Bhattachary [1] and used to 

solve one dimensional heat conduction in a solid slab [11,12]. It is also used to solve the  Korteweg-de Vries 

equation [13], we use this method to obtain the numerical approximation for Klein Gordon equation, which is 

given in(1).we start deriving the method by assuming that F (u) denote to any continuous differential function, 

and then by using chain rule, we have the following: 

                

 

 

              (10) 

Using the usual forward difference replacement to  we obtain the finite difference representation of Eq. (10) 

we get: 

 

If we take  and   then we obtained the exponential finite difference scheme as: 

 

 

let  ,we get: 

 

 

          (11) 

Similar to the pervious methods, we use the Taylor series (7) to determine the second row and obtain: 

 

 

 
            (12) 
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III. FIGURES AND TABLES 
III.1 Numerical Example 

The following example solved numerically to illustrate efficiency of the presented methods. 

Example : [14] 

     ,       

With the initial conditions 

           

We take          . 

Where                                and  

 

 

 
Fig. (2) Space-Time graph of fully implicit solution to 0<t<0.01   and -1<x<1 with h=0.105263157894737                                                                 

 

 
 

Fig. (3) Space-Time graph of exact solution to 0<t<0.01 and -1<x<1 with h=0.105263157894737 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4) Space-Time graph of Exponential solution to  0<t<0.01 and -1<x<1 with h=0.105263157894737                                                                  
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Table (1) comparison exact with fully implicit and exponential  

Exact     t=10 Fully Implicit t=10 Exponential   t=10 

-0.415048325818363 -0.415048325818363 -0.415048325818363 

-0.365277881508473 -0.365160529736901 -0.365280203828274 

-0.317670922704520 -0.317670559209555 -0.317673354402609 

-0.271868804987755 -0.271868507872998 -0.271871393450315 

-0.227556818695303 -0.227556568822620 -0.227559637169243 

-0.184454716348066 -0.184454512977609 -0.184457883039865 

-0.142309026690262 -0.142308869214878 -0.142312756563446 

-0.100886681334808 -0.100886569280600 -0.100891442373613 

-0.059969595059594 -0.059969528086989 -0.059976814870891 

-0.019349919766315 -0.019349897670325 -0.019368155435091 

0.021174254684441 0.021174231974307 0.021192412127243 

0.061802945529073 0.061802877949001 0.061807831330644 

0.102738241949429 0.102738129301538 0.102740721843501 

0.319771946441709 0.319771582558915 0.319771774387514 

0.417345261791338 0.417345261791338 0.417345261791338 

 

IV. CONCLUSION 
We saw that Fully implicit method is much more accurate than Exponential finite difference method for solving  

 Klein Gordon Equation and this kind of models as shown in figures (2-4) and table (1).  
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